Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(12): 113574, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38100356

RESUMO

Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss. While therapies exist to slow MS progression, no treatment currently exists for remyelination. Remyelination, linked to reduced disability in MS, relies on microglia and monocyte-derived macrophages (MDMs). This study aims to understand the role of microglia during remyelination by lineage tracing and depleting them. Microglial lineage tracing reveals that both microglia and MDMs initially accumulate, but microglia later dominate the lesion. Microglia and MDMs engulf equal amounts of inhibitory myelin debris, but after microglial depletion, MDMs compensate by engulfing more myelin debris. Microglial depletion does, however, reduce the recruitment and proliferation of oligodendrocyte progenitor cells (OPCs) and impairs their subsequent differentiation and remyelination. These findings underscore the essential role of microglia during remyelination and offer insights for enhancing this process by understanding microglial regulation of remyelination.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Remielinização , Humanos , Bainha de Mielina/patologia , Microglia/patologia , Doenças Desmielinizantes/patologia , Macrófagos/patologia , Esclerose Múltipla/patologia
2.
Mol Neurodegener ; 17(1): 82, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36514132

RESUMO

BACKGROUND: Microglia regulate the response to injury and disease in the brain and spinal cord. In white matter diseases microglia may cause demyelination. However, how microglia respond and regulate demyelination is not fully understood. METHODS: To understand how microglia respond during demyelination, we fed mice cuprizone-a potent demyelinating agent-and assessed the dynamics of genetically fate-mapped microglia. We then used single-cell RNA sequencing to identify and track the microglial subpopulations that arise during demyelination. To understand how microglia contribute to the clearance of dead oligodendrocytes, we ablated microglia starting at the peak of cuprizone-induced cell death and used the viability dye acridine orange to monitor apoptotic and lytic cell morphologies after microglial ablation. Lastly, we treated serum-free primary microglial cultures to model distinct aspects of cuprizone-induced demyelination and assessed the response. RESULTS: The cuprizone diet generated a robust microglial response by week 4 of the diet. Single-cell RNA sequencing at this time point revealed the presence of several cuprizone-associated microglia (CAM) clusters. These clusters expressed a transcriptomic signature indicative of cytokine regulation and reactive oxygen species production with altered lysosomal and metabolic changes consistent with ongoing phagocytosis. Using acridine orange to monitor apoptotic and lytic cell death after microglial ablation, we found that microglia preferentially phagocytose lytic carcasses. In culture, microglia exposed to lytic carcasses partially recapitulated the CAM state, suggesting that phagocytosis contributes to this distinct microglial state during cuprizone demyelination. CONCLUSIONS: Microglia serve multiple roles during demyelination, yet their transcriptomic state resembles other neurodegenerative conditions. The phagocytosis of cellular debris is likely a universal cause for a common neurodegenerative microglial state.


Assuntos
Cuprizona , Doenças Desmielinizantes , Animais , Camundongos , Cuprizona/toxicidade , Cuprizona/metabolismo , Microglia/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Transcriptoma , Laranja de Acridina/efeitos adversos , Laranja de Acridina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Commun Biol ; 5(1): 1114, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266565

RESUMO

High dimensional single-cell analysis such as single cell and single nucleus RNA sequencing (sc/snRNAseq) are currently being widely applied to explore microglia diversity. The use of sc/snRNAseq provides a powerful and unbiased approach to deconvolve heterogeneous cellular populations. However, sc/snRNAseq and analyses pipelines are designed to find heterogeneity. Indeed, cellular heterogeneity is often the most frequently reported finding. In this Perspective, we consider the ubiquitous concept of heterogeneity focusing on its application to microglia research and its influence on the field of neuroimmunology. We suggest that a clear understanding of the semantic and biological implications of microglia heterogeneity is essential for mitigating confusion among researchers.


Assuntos
Microglia , Análise de Célula Única , Análise de Sequência de RNA
4.
Mol Neurodegener ; 16(1): 19, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33766097

RESUMO

BACKGROUND: CD33 is genetically linked to Alzheimer's disease (AD) susceptibility through differential expression of isoforms in microglia. The role of the human CD33 short isoform (hCD33m), preferentially encoded by an AD-protective CD33 allele (rs12459419T), is unknown. Here, we test whether hCD33m represents a loss-of-function or gain-of-function variant. METHODS: We have developed two models to test the role of hCD33m. The first is a new strain of transgenic mice expressing hCD33m in the microglial cell lineage. The second is U937 cells where the CD33 gene was disrupted by CRISPR/Cas9 and complemented with different variants of hCD33. Primary microglia and U937 cells were tested in phagocytosis assays and single cell RNA sequencing (scRNAseq) was carried out on the primary microglia. Furthermore, a new monoclonal antibody was developed to detect hCD33m more efficiently. RESULTS: In both primary microglia and U937 cells, we find that hCD33m enhances phagocytosis. This contrasts with the human CD33 long isoform (hCD33M) that represses phagocytosis, as previously demonstrated. As revealed by scRNAseq, hCD33m+ microglia are enriched in a cluster of cells defined by an upregulated expression and gene regulatory network of immediate early genes, which was further validated within microglia in situ. Using a new hCD33m-specific antibody enabled hCD33m expression to be examined, demonstrating a preference for an intracellular location. Moreover, this newly discovered gain-of-function role for hCD33m is dependent on its cytoplasmic signaling motifs, dominant over hCD33M, and not due to loss of glycan ligand binding. CONCLUSIONS: These results provide strong support that hCD33m represents a gain-of-function isoform and offers insight into what it may take to therapeutically capture the AD-protective CD33 allele.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Microglia/fisiologia , Fragmentos de Peptídeos/metabolismo , Fagocitose/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Alelos , Animais , Sistemas CRISPR-Cas , Cruzamentos Genéticos , Feminino , Mutação com Ganho de Função , Edição de Genes , Redes Reguladoras de Genes , Genes Precoces , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Polissacarídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , RNA-Seq , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/fisiologia , Análise de Célula Única , Células U937
5.
Front Immunol ; 11: 588021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240276

RESUMO

Multiple Sclerosis (MS) is a neurodegenerative disease characterized by multiple focal lesions, ongoing demyelination and, for most people, a lack of remyelination. MS lesions are enriched with monocyte-derived macrophages and brain-resident microglia that, together, are likely responsible for much of the immune-mediated neurotoxicity. However, microglia and macrophage also have documented neuroprotective and regenerative roles, suggesting a potential diversity in their functions. Linked with microglial functional diversity, they take on diverse phenotypes developmentally, regionally and across disease conditions. Advances in technologies such as single-cell RNA sequencing and mass cytometry of immune cells has led to dramatic developments in understanding the phenotypic changes of microglia and macrophages. This review highlights the origins of microglia, their heterogeneity throughout normal ageing and their contribution to pathology and repair, with a specific focus on autoimmunity and MS. As phenotype dictates function, the emerging heterogeneity of microglia and macrophage populations in MS offers new insights into the potential immune mechanisms that result in inflammation and regeneration.


Assuntos
Microglia/imunologia , Esclerose Múltipla/imunologia , Animais , Encefalomielite Autoimune Experimental/imunologia , Humanos , Macrófagos/imunologia , Monócitos/imunologia , Remielinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...